4.7 Use Isosceles and **Equilateral Triangles**

Before

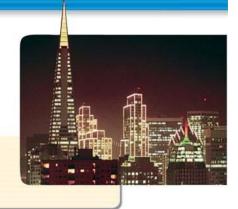
You learned about isosceles and equilateral triangles.

Now

You will use theorems about isosceles and equilateral triangles.

Why?

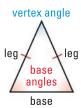
So you can solve a problem about architecture, as in Ex. 40.



Key Vocabulary

- legs
- vertex angle
- base
- · base angles

In Lesson 4.1, you learned that a triangle is isosceles if it has at least two congruent sides. When an isosceles triangle has exactly two congruent sides, these two sides are the **legs**. The angle formed by the legs is the **vertex angle**. The third side is the **base** of the isosceles triangle. The two angles adjacent to the base are called **base angles**.



THEOREMS

For Your Notebook

THEOREM 4.7 Base Angles Theorem

If two sides of a triangle are congruent, then the angles opposite them are congruent.

If
$$\overline{AB} \cong \overline{AC}$$
, then $\angle B \cong \angle C$.

Proof: p. 265

THEOREM 4.8 Converse of Base Angles Theorem

If two angles of a triangle are congruent, then the sides opposite them are congruent.

If
$$\angle B \cong \angle C$$
, then $\overline{AB} \cong \overline{AC}$.

Proof: Ex. 45, p. 269

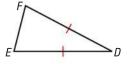
EXAMPLE 1

Apply the Base Angles Theorem

In $\triangle DEF$, $\overline{DE} \cong \overline{DF}$. Name two congruent angles.

Solution

 $ightharpoonup \overline{DE} \cong \overline{DF}$, so by the Base Angles Theorem, $\angle E \cong \angle F$.

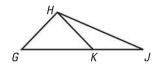


GUIDED PRACTICE for Example 1

Copy and complete the statement.

1. If
$$\overline{HG} \cong \overline{HK}$$
, then \angle ? \cong \angle ?.

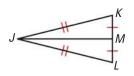
2. If
$$\angle KHJ \cong \angle KJH$$
, then $? \cong ?$.



PROOF **Base Angles Theorem**

GIVEN
$$\blacktriangleright \overline{JK} \cong \overline{JL}$$

PROVE
$$\triangleright \angle K \cong \angle L$$



- **Plan** a. Draw \overline{JM} so that it bisects \overline{KL} .
- for **Proof b.** Use SSS to show that $\triangle JMK \cong \triangle JML$.
 - **c.** Use properties of congruent triangles to show that $\angle K \cong \angle L$.

	STATEMENTS	REASONS
Plan	1. M is the midpoint of \overline{KL} .	1. Definition of midpoint
in Action	a. 2. Draw <i>JM</i> .	2. Two points determine a line.
	3. $\overline{MK} \cong \overline{ML}$	3. Definition of midpoint
	4. $\overline{JK} \cong \overline{JL}$	4. Given
	5. $\overline{JM} \cong \overline{JM}$	5. Reflexive Property of Congruence
	b. 6. $\triangle JMK \cong \triangle JML$	6. SSS Congruence Postulate
	c. 7. $\angle K \cong \angle L$	7. Corresp. parts of $\cong \mathbb{A}$ are \cong .

Recall that an equilateral triangle has three congruent sides.

The corollaries state that a triangle is equilateral if and only if it is equiangular.

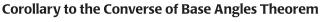
BICONDITIONAL

WRITE A

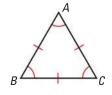
COROLLARIES

Corollary to the Base Angles Theorem

If a triangle is equilateral, then it is equiangular.



If a triangle is equiangular, then it is equilateral.



For Your Notebook

EXAMPLE 2

Find measures in a triangle

Find the measures of $\angle P$, $\angle Q$, and $\angle R$.

The diagram shows that $\triangle PQR$ is equilateral. Therefore, by the Corollary to the Base Angles Theorem, $\triangle PQR$ is equiangular. So, $m \angle P = m \angle Q = m \angle R$.

$$3(m\angle P) = 180^{\circ}$$
 Triangle Sum Theorem $m\angle P = 60^{\circ}$ Divide each side by 3.

▶ The measures of $\angle P$, $\angle Q$, and $\angle R$ are all 60°.

GUIDED PRACTICE

for Example 2

- **3.** Find *ST* in the triangle at the right.
- 4. Is it possible for an equilateral triangle to have an angle measure other than 60°? Explain.

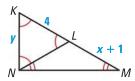
EXAMPLE 3

Use isosceles and equilateral triangles

 \bigotimes ALGEBRA Find the values of x and y in the diagram.

Solution

STEP 1 Find the value of y. Because $\triangle KLN$ is equiangular, it is also equilateral and $\overline{KN} \cong \overline{KL}$. Therefore, $\gamma = 4$.



AVOID ERRORS

You cannot use $\angle N$ to refer to ∠*LNM* because three angles have N as their vertex.

STEP 2 Find the value of x. Because $\angle LNM \cong \angle LMN$, $\overline{LN} \cong \overline{LM}$ and $\triangle LMN$ is isosceles. You also know that LN = 4 because $\triangle KLN$ is equilateral.

LN = LM

Definition of congruent segments

4 = x + 1

Substitute 4 for LN and x + 1 for LM.

3 = x

Subtract 1 from each side.

EXAMPLE 4

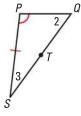
Solve a multi-step problem

LIFEGUARD TOWER In the lifeguard tower, $\overline{PS} \cong \overline{QR}$ and $\angle QPS \cong \angle PQR$.

- a. What congruence postulate can you use to prove that $\triangle QPS \cong \triangle PQR$?
- **b.** Explain why $\triangle PQT$ is isosceles.
- **c.** Show that $\triangle PTS \cong \triangle QTR$.

Solution

- **AVOID ERRORS** When you redraw the triangles so that they do not overlap, be careful to copy all given information and labels correctly.
- **a.** Draw and label $\triangle QPS$ and $\triangle PQR$ so that they do not overlap. You can see that $\overline{PO} \cong \overline{OP}$, $\overline{PS} \cong \overline{OR}$, and $\angle OPS \cong \angle POR$. So, by the SAS Congruence Postulate, $\triangle QPS \cong \triangle PQR$.
- **b.** From part (a), you know that $\angle 1 \cong \angle 2$ because corresp. parts of $\cong A$ are \cong . By the Converse of the Base Angles Theorem, $\overline{PT} \cong \overline{QT}$, and $\triangle PQT$ is isosceles.
- **c.** You know that $\overline{PS} \cong \overline{QR}$, and $\angle 3 \cong \angle 4$ because corresp. parts of $\cong \triangle$ are \cong . Also, $\angle PTS \cong \angle QTR$ by the Vertical Angles Congruence Theorem. So, $\triangle PTS \cong \triangle QTR$ by the AAS Congruence Theorem.



GUIDED PRACTICE

for Examples 3 and 4

- **5.** Find the values of *x* and *y* in the diagram.
- **6. REASONING** Use parts (b) and (c) in Example 4 and the SSS Congruence Postulate to give a different proof that $\triangle QPS \cong \triangle PQR$.

4.7 EXERCISES

HOMEWORK KFY on p. WS1 for Exs. 5, 17, and 41

★ = **STANDARDIZED TEST PRACTICE** Exs. 2, 18, 19, 30, 31, 42, and 46

SKILL PRACTICE

- 1. **VOCABULARY** Define the *vertex angle* of an isosceles triangle.
- **2.** ★ **WRITING** What is the relationship between the base angles of an isosceles triangle? *Explain*.

EXAMPLE 1

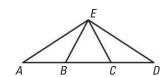
on p. 264 for Exs. 3–6 **USING DIAGRAMS** In Exercises 3–6, use the diagram. Copy and complete the statement. Tell what theorem you used.

3. If
$$\overline{AE} \cong \overline{DE}$$
, then \angle ? \cong \angle ?.

4. If
$$\overline{AB} \cong \overline{EB}$$
, then \angle ? \cong \angle ?.

5. If
$$\angle D \cong \angle CED$$
, then $? \cong ?$.

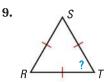
6. If
$$\angle EBC \cong \angle ECB$$
, then $? \cong ?$.



EXAMPLE 2

on p. 265 for Exs. 7–14 **REASONING** Find the unknown measure.

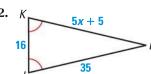
7.



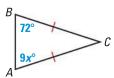
- **10. DRAWING DIAGRAMS** A base angle in an isosceles triangle measures 37°. Draw and label the triangle. What is the measure of the vertex angle?
- **MALGEBRA** Find the value of x.

11. E

12.



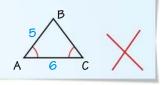
12



14. ERROR ANALYSIS *Describe* and correct the error made in finding *BC* in the diagram shown.

$$\angle A \cong \angle C$$
, therefore $\overline{AC} \cong \overline{BC}$. So,

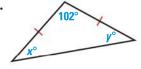
$$BC = 6$$



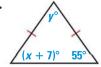
EXAMPLE 3

on p. 266 for Exs. 15–17 (x) ALGEBRA Find the values of x and y.

15.



16.

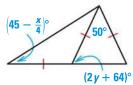


18. ★ **SHORT RESPONSE** Are isosceles triangles always acute triangles? *Explain* your reasoning.

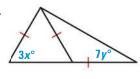
- 19. \star MULTIPLE CHOICE What is the value of x in the diagram?
 - **(A)** 5 **(C)** 7
- **B**) 6 **(D)** 9

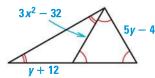
- **MALGEBRA** Find the values of x and y, if possible. Explain your reasoning.

20.



21.





W ALGEBRA Find the perimeter of the triangle.

23.

25.



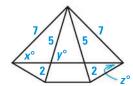
REASONING In Exercises 26–29, use the diagram. State whether the given values for x, y, and z are possible or not. If not, explain.

26.
$$x = 90, y = 68, z = 42$$

27.
$$x = 40$$
, $y = 72$, $z = 36$

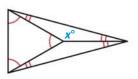
28.
$$x = 25$$
, $y = 25$, $z = 15$

29.
$$x = 42$$
, $y = 72$, $z = 33$

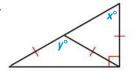


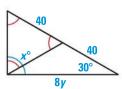
- **30.** \star **SHORT RESPONSE** In $\triangle DEF$, $m \angle D = (4x + 2)^{\circ}$, $m \angle E = (6x 30)^{\circ}$, and $m \angle F = 3x^{\circ}$. What type of triangle is $\triangle DEF$? *Explain* your reasoning.
- 31. \star SHORT RESPONSE In $\triangle ABC$, D is the midpoint of \overline{AC} , and \overline{BD} is perpendicular to \overline{AC} . Explain why $\triangle ABC$ is isosceles.
- **W** ALGEBRA Find the value(s) of the variable(s). *Explain* your reasoning.

32.



33.





- **35. REASONING** The measure of an exterior angle of an isosceles triangle is 130°. What are the possible angle measures of the triangle? Explain.
- **36. PROOF** Let $\triangle ABC$ be isosceles with vertex angle $\angle A$. Suppose $\angle A$, $\angle B$, and $\angle C$ have integer measures. Prove that $m \angle A$ must be even.
- **37. CHALLENGE** The measure of an exterior angle of an isosceles triangle is x° . What are the possible angle measures of the triangle in terms of x? *Describe* all the possible values of *x*.

PROBLEM SOLVING

38. SPORTS The dimensions of a sports pennant are given in the diagram. Find the values of x and y.

@HomeTutor for problem solving help at classzone.com

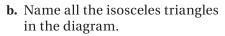
39. ADVERTISING A logo in an advertisement is an equilateral triangle with a side length of 5 centimeters. Sketch the logo and give the measure of each side and angle.

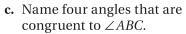
@HomeTutor for problem solving help at classzone.com

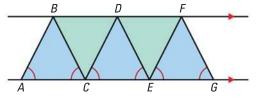
40. ARCHITECTURE The Transamerica Pyramid building shown in the photograph has four faces shaped like isosceles triangles. The measure of a base angle of one of these triangles is about 85°. What is the approximate measure of the vertex angle of the triangle?

EXAMPLE 4

on p. 266 for Exs. 41–42 41.) MULTI-STEP PROBLEM To make a zig-zag pattern, a graphic designer sketches two parallel line segments. Then the designer draws blue and green triangles as shown below.





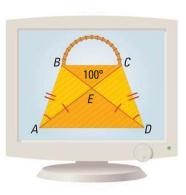


42. ★ **VISUAL REASONING** In the pattern below, each small triangle is an equilateral triangle with an area of 1 square unit.

Triangle	Δ	\triangle		
Area	1 square unit	Ş	Ş	?

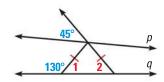
- **a. Reasoning** *Explain* how you know that any triangle made out of equilateral triangles will be an equilateral triangle.
- **b. Area** Find the areas of the first four triangles in the pattern.
- **c. Make a Conjecture** *Describe* any patterns in the areas. Predict the area of the seventh triangle in the pattern. *Explain* your reasoning.
- **43. REASONING** Let $\triangle POR$ be an isosceles right triangle with hypotenuse OR. Find $m \angle P$, $m \angle Q$, and $m \angle R$.
- **44. REASONING** *Explain* how the Corollary to the Base Angles Theorem follows from the Base Angles Theorem.
- **45. PROVING THEOREM 4.8** Write a proof of the Converse of the Base Angles Theorem.

- **46.** ★ **EXTENDED RESPONSE** Sue is designing fabric purses that she will sell at the school fair. Use the diagram of one of her purses.
 - **a.** Prove that $\triangle ABE \cong \triangle DCE$.
 - **b.** Name the isosceles triangles in the purse.
 - **c.** Name three angles that are congruent to $\angle EAD$.
 - **d. What If?** If the measure of $\angle BEC$ changes, does your answer to part (c) change? *Explain*.

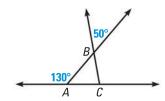


REASONING FROM DIAGRAMS Use the information in the diagram to answer the question. *Explain* your reasoning.

47. Is $p \parallel q$?



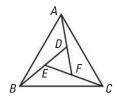
48. Is $\triangle ABC$ isosceles?



49. PROOF Write a proof.

GIVEN \blacktriangleright $\triangle ABC$ is equilateral, $\angle CAD \cong \angle ABE \cong \angle BCF$.

PROVE $ightharpoonup \triangle DEF$ is equilateral.



- **50. COORDINATE GEOMETRY** The coordinates of two vertices of $\triangle TUV$ are T(0, 4) and U(4, 0). *Explain* why the triangle will always be an isosceles triangle if V is any point on the line y = x except (2, 2).
- **51. CHALLENGE** The lengths of the sides of a triangle are 3t, 5t 12, and t + 20. Find the values of t that make the triangle isosceles. *Explain*.

MIXED REVIEW

What quadrant contains the point? (p. 878)

Copy and complete the given function table. (p. 884)

55.

Prepare for

Lesson 4.8 in Exs. 57–60.

X	-7	0	5
y = x - 4	?	?	?

56.

?	-2	0	1
?	-6	0	3

Use the Distance Formula to decide whether $\overline{AB} \cong \overline{AC}$. (p. 15)

57.
$$A(0, 0), B(-5, -6), C(6, 5)$$

58.
$$A(3, -3), B(0, 1), C(-1, 0)$$

59.
$$A(0, 1), B(4, 7), C(-6, 3)$$

60.
$$A(-3, 0), B(2, 2), C(2, -2)$$